Lunar Magnetic Field Measurements with a Cubesat Impactor

Ian Garrick-Bethell*, Robert Lin, Hugo Sanchez, Belgacem Jaroux, Manfred Bester, Patrick Brown, Daniel Cosgrove, Michele Dougherty, Jasper Halekas, Doug Hemingway, Paulo Lozano, Francois Martel, Caleb Whitlock

*University of California, Santa Cruz
NASA Ames Research Center
University of California, Berkeley
Imperial College London
Massachusetts Institute of Technology
Jet Propulsion Laboratory
Low Cost Planetary Mission Conference, June 20, 2013
Lunar Magnetism: A 53 Year Old Problem

- 1959 Soviet Luna-1: Moon has no global magnetic field.
- 1970s: Local (~100 km) magnetic anomalies discovered - origins still debated.
 - A past lunar dynamo?
 - Or impact processes?

→ Magnetic field measurements near the surface would constrain their origin.
Lunar Swirls

• Anomalous color markings.
• Three different hypotheses for their formation.
• Solar wind processes: Shielding by the magnetic field?
 – Solar wind protons are normally a darkening agent.

Magnetic field at 18 km at Reiner Gamma

Hemingway and Garrick-Bethell (2012)

(Visible with binoculars)
Swirl Formation Hypothesis

Hood and Schubert (1980)

Hemingway and Garrick-Bethell (2012)
Swirl Formation Hypothesis

Hood and Schubert (1980)

→ Require near-surface particle flux and magnetic field measurements.

Hemingway and Garrick-Bethell (2012)
Lunar Surface Water

• The Moon is covered in very small amounts of surface water/hydroxyl (OH) (Pieters et al. *Science* 2009).

• Swirls are anti-correlated with water/OH.

• Understanding the origin of swirls would help understand lunar surface water processes and space weathering.

OH concentrations at Reiner Gamma. *Kramer et al.* (2011)
Field at the surface and altitude

- Fine structure emerges with altitude.
 - Cusp regions correlated with dark central features?
 - Goal: < 20 degree impact angle
Lunar Cubesat Impactor Concept

- Measure magnetic field and particle flux down to < 100 meters altitude.
Lunar Cubesat Impactor Concept

- Measure magnetic field and particle flux down to < 100 meters altitude.

Berkeley SSL CINEMA cubesat (in orbit now) NSF-funded, ~$1M, Korea Partner
How can we realize this mission with a 3U cubesat?

Enabling new technology:
1) Instrument (magnetometer)
2) Propulsion and navigation
CINEMA Magnetometer - 1

- Anisotropic magneto-resistance (AMR).
- Three Honeywell HMC1001 sensors
- PC104 board-based
- Two three-axis assemblies, one on a 1-meter boom
- < 2 nT sensitivity
- 112 grams total, one board
- Half-board possible with FPGA electronics
- Measurement frequency of 200 Hz possible.
CINEMA Magnetometer - 2

- 1-meter boom

UC Berkeley Space Sciences Lab
Communication and Navigation

- JPL cubesat transponder.
 - Flying on INSPIRE
 - Doppler + range
- Deep Space Network 34-meter dish required to close links for telemetry, science data, and ranging.
 - Expensive, but necessary.
- Berkeley 11-meter dish also available.

Cubesat transponder (JPL)
Link Budget

- 20 kbps required during lunar impact.
- Use of Berkeley 11-meter dish for telemetry (4 kbps).
- UCB mission operations can perform entire mission.
Getting to the Moon

1. Cubesat ride-share to geosynchronous orbit

2. Spiral to Moon using electrospay propulsion (~120 days)

Cubesat communication and navigation via Deep Space Network
Propulsion - 1

- Plasma propulsion – complex but efficient.
- Large molecule liquid salt – “plasma” in a liquid state.
 - Extract ions, accelerate them.

Liquid salt: 1-ethyl-3-methylimidazolium bis(triuroomethylsulfonyl)imide
Propulsion - 2

• Micro-fabricated emitters.
• Porous metal tank wicks salt to emitter head by capillary action.
• Accelerated by extraction grid.

MIT Space Propulsion Laboratory
Propulsion - 3

- Three-axis control, and:
- Primary propulsion for transit to the Moon.
- Specific impulse > 2000 s.
 - Thrust and \(I_{sp} \) scale with input power and voltage.
- Currently, undergoing long-duration testing.
- 1U cubesat demo in <1 year.
• Assumption: 30 W available power.
 – Body fixed panels.
• Spiral to lunar from GEO impact takes ~105 days, 1.9 km/s delta-v.
• Requires ~400 grams of propellant.
 – 0.7U of volume
Trajectory Simulations - 2

- Impact of the Moon, as seen from the Earth.
- Challenge: impacting at low (<20°) angles.
Challenges Ahead

• Challenges:
 – Long-duration testing of propulsion system.
 – Approaches to radiation exposure.
Conclusions

• A fully independent, 3-axis controlled cubesat capable of traveling to the Moon with >2 km/s delta-v capability will be possible in the next 1-2 years.

• Unique platform capable of other near-Earth space measurements.

• Paper available at: http://people.ucsc.edu/~igarrick
Extra Slides
Looking Ahead: Asteroid Interceptor

- Mass, density, magnetic field.
- Physical properties through impact.
- Ability to alter asteroid course
Acknowledgments and Partners

• UC Berkeley – Science and Mission Operations
• NASA Ames – Mission Planning
• MIT – Propulsion and Trajectory Planning
• Imperial College London – Magnetometer
• Jet Propulsion Laboratory – Transponder
Extra slides
Technical Advantages

• A lunar cubesat would be the smallest spacecraft to ever leave the Earth.
 – Lots of public interest.

• Small mass = low launch cost.
 – Low cost enables more frequent missions.

• Cubesats enable university access to space and student training.

• A platform capable of reaching the Moon would have lots of other applications.
Key Technologies Required for a Lunar Cubesat

• Two key enabling technologies are being built or will be tested in 2013:
 – 1) Propulsion system that can provide high delta-v for GTO to lunar impact or possibly even lunar orbit. (0.5 U volume)
 – 2) Transponder and radio to provide communications and navigation via NASA’s Deep Space Network (DSN). (0.5 U volume)
• High power (~30 W) from solar panels is also required for the propulsion system, but this is not a major challenge for cubesats.
• Radiation for some orbits a serious concern.
1) Propulsion

• MIT’s nano-fabricated electrospray propulsion system offers high specific impulse (>2500 s) ion propulsion with no moving parts or plasma. Thrust scales linearly with power input.
• Modular ~1 cm square units provide main propulsion and attitude control.
• Time to lunar impact for 3U cubesat, from GTO (30 W power): 120 days. Total propulsion system volume: 0.5U.
• Testing underway at MIT. 1U LEO demo planned for launch in 2013.
• UCSC/Ames collaborating with MIT.
• MIT graduate student planning trajectories from GTO to Moon.

(Francois Martel/Paulo Lozano MIT)
2) Navigation

- JPL X-band (7.2 GHz up and 8.4 GHz down) radio and transponder capable of providing Doppler and range information via NASA’s Deep Space Network.
- Design review of improved version: Feb. 2013. Fits into 0.5 U volume.
- Cost: <$100k.
- Users can either work with JPL/DSN to obtain data, or communicate with their own large X-band capable ground station.
- UCB SSL experience: comm and nav with the DSN/JPL for ARTEMIS now in lunar orbit. Data rate: 0.5 Mbps (using a different transponder and 70 m dish).
- UCSC/UCB communicating with JPL on use of their system in a lunar cubesat mission.
Some Remaining Key Challenges

• 1) These technologies are almost ready, but not space qualified. User would have to accept some risk in using them, or wait another 1-2 years until they are fully qualified.
 – Some risk is probably acceptable for low cost cubesat missions.
• 2) The radiation environment at GTO is substantially worse than in LEO, due to periodic radiation belt passage.
 – Radiation tolerant hardware, radiation shielding, and radiation tolerant software designs are being considered. Motivation is very high, due to number of GTO opportunities.
 – Geosynchronous orbit greatly preferred, but probably fewer opportunities for cubesats.
 – Any shared ride beyond GTO would work. Example: Orion human space capsule test a possibility in 2014-2015. NASA is considering ride shares on Orion.
Future Work

• Design work for a 3U lunar cubesat is ongoing at UCSC/UCB/NASA Ames.

• Propulsion system: long-duration testing underway at MIT. 1U demonstration in LEO should launch in 2013.
 – Lunar trajectory work ongoing at MIT.

• Navigation system: awaiting results of Feb. 2013 design review at JPL.
 – Working with NASA Ames, UCB and JPL on navigation and Deep Space Network scheduling requirements.

• Radiation concerns: working with industry partner in early 2013 to discuss mitigation techniques.

• General feeling that the mission is possible and a design will converge.
 – Always seeking partners.

• Somebody will be the first to send a cubesat to the Moon, who will it be?